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Abstract

Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves
since inflection points represents important shape feature. A real inflection point is also required for transforming
projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve.
However, the naive method for computing the inflection points of a planar cubic algebraicftcu@eby directly
intersectingf = 0 and its Hessian curvE ( f) = 0 requires solving a degree nine univariate polynomial equation,
and thus is relatively inefficient. In this paper we present an algorithm for computing the real inflection points of a
real planar cubic algebraic curve. The algorithm follows Hilbert's solution for computing the inflection points of a
cubic algebraic curve in the complex projective plane. Hilbert's solution is based on invariant theory and requires
solving only a quartic polynomial equation and several cubic polynomial equations. Through a detailed study with
emphasis on the distinction between real and imaginary inflection points, we adapt Hilbert’s solution to efficiently
compute only the real inflection points of a cubic algebraic cyive0, without exhaustive but unnecessary search
and root testing. To compute the real inflection pointget 0, only two cubic polynomial equations need to be
solved in our algorithm and it is unnecessary to solve numerically the quartic equation prescribed in Hilbert's
solution. In addition, the invariants of = 0 are used to analyze the singularity of a singular curve, since the
number of the real inflection points gf= 0 depends on its singularity type.
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1. Introduction

An inflection point, or flex, of a planar algebraic curvé(x, y, w) = 0 is a simple point off =0 at
which the tangent off = 0 has at least an order three contact witk= 0. Algebraically, the inflection
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points of an algebraic curvé = 0 are at the intersection gf = 0 with the Hessian curvél (1) = 0 of
f =0. This article is about computing the real inflection points of an irreducible planar cubic algebraic
curve.

Planar cubic algebraic curves, often referred t@wascs, are the simplest planar curves containing
inflection points (Walker, 1950; Patterson, 1988b). Shape modeling with planar cubics have been studied
in (Paluszny and Patterson, 1998). Inflection points are of interest in this setting because it is often
necessary to know whether or not a given cubic curve segment contains an inflection point.

A real inflection point is also useful when one needs to map projectively an irreducible planar cubic
to the normal formy?w = g(x, w) (i.e., the Weierstrass form), whegéx, w) is a cubic form inx and
w, since the normal form can be obtained by placing a real inflection poifit-eD at the point(0, 1, 0)
at infinity. The normal form of a planar cubic facilitates the study of the projectively invariant properties
and the parameterization of the curve. Such an application of planar cubics is considered in (Patterson,
1988a) for parameterizing a planar cubic and in (Wang et al., 2002) for analyzing the intersection curve
between two quadric surfaces in 3D space, which is shown to be related birationally to a planar cubic
curve. Without using an inflection point, one would normally have to use a more involved birational
quadratic transformation to reduce a planar cubic to the normal form (Abhyankar and Bajaj, 1987;
Patterson, 1988a).

Most of existing research in CAGD on computing inflection points considers rational parametric
curves. The detection of inflection points on a rational planar parametric cubic curve, which is planar
singular cubic algebraic curve, is studied in (Wang, 1981; Stone and DeRose, 1989). The detection and
computation of inflection points of general rational parametric curves are studied in (Manocha and Canny,
1992; Li and Cripps, 1997).

Given a planar cubig’ = 0, its Hessian curvéf ( f) = 0 is also a cubic. Hence, in general, a planar
cubic has nine inflection points, including real and complex conjugate ones. The nine inflection points
of a real nonsingular cubic comprise three real inflection points and six imaginary ones (Walker, 1950).
These inflection points can be computed by directly intersecfirg0 with H () = 0, which requires
solving a univariate equation of degree nine. Probably due to the lack of emphasis in classical algebraic
geometry on the computational aspect of algebraic curves, it has been unclear to the CAGD community
whether or not the inflection points of a planar cubic can be found more easily than solving a degree nine
eguation (Patterson, 1988a).

On the other hand, the existence of a simpler solution seems to be possible, since it is well known
that the nine inflection points of a planar cubic form a so-catieg-point configuration, i.e., every line
passing through two of the nine points also passes through a third (Walker, 1950). Indeed, such a solution
was given by Hilbert more than a hundred years ago (Hilbert, 1993). As an application of his work on
invariant theory, Hilbert presented a method for computing the inflection points of a planar cubic in the
complex plane through solving a quartic equation, called tharacteristic equation. In this paper we
adapt Hilbert’s solution to devise an efficient algorithm for computing onlyréakinflections of a real
cubic algebraic curve.

Since it is often the case that only real inflection points are of concern in CAGD, we study the
ramifications of distinguishing real and imaginary inflection points. If only real inflections are sought,

a direct implementation of Hilbert's solution would be inefficient since it would require exhaustive
computation of the imaginary roots of a quartic equation as well as the imaginary linear components
of a reducible cubic curve. Our goal in this paper is to adapt Hilbert’s solution to efficiently compute the
real inflection points of a cubic algebraic curve.
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Specifically, we show how to use invariants to detect singular cubics in order to compute real inflection
points for different types of cubics, since the number of the real inflection points depends on the
singularity type of a cubic. We further show that all the real inflection points of a cubic lie on a real
line given by a particular real root of the quartic characteristic equation of Hilbert. Finally, we give a
simple closed-form formula for this particular real root; hence, the real inflection points of a cubic can
be computed without having to solve numerically Hilbert characteristic equation of degree four. Only
two cubic polynomial equations need to be solved in a step for extracting a real linear component of a
reducible cubic algebraic curve in our algorithm.

The remainder of this paper is organized as follows. In Section 2 preliminaries about planar cubics
and the invariants of a ternary form are introduced. In Section 3 we present the algorithm for computing
the singular points and real inflection points of a planar real cubic curve.

2. Preliminaries

A planar algebraic curvé (x, y, w) = 0 of degreex is given by the ternary form

fx,y,w) = Z fijrx'yd wk. (1)
i,j. k=0, i+j+k=n
For a cubic curvef = 0 to be considered in this paper, we assume throughout that the coeffigignts
are real, and we calf = 0 aplanar real cubic algebraic curve, or acubic for short when there is no
danger of confusion.

An algebraic curvef =0 isreducible if f can be factored into two lower degree polynomials, that is,
there exist polynomialgy(x, y, w) and f>(x, y, w) such thatf = f1 f>. Otherwise,f = 0 isirreducible.
Geometrically, a reducible curve consists of lower degree algebraic curves as its components.

A point (xo, yo, zo) is a singular point of a planar algebraic curféx, y,z) =0 if

fx(xo0, yo, wo) = fy(x0, Yo, wo) = fu (X0, yo, wo) =0. (2

By Eulers identitynf = xf, + yf, + zf., the conditions in (2) imply thatxo, yo, wo) is a point onf = 0.
The curvef = 0 is calledsingular if it has a singular point; otherwise, it is callednsingular. A singular
point p of the curvef = 0 is characterized geometrically by that the tangenft te 0 at p is not uniquely
defined.

An inflection point of the curvef = 0 is a nonsingular point on f = 0 at which the tangent t¢ =0
has at least an order three contact wite= 0 (Walker, 1950). The inflection points of the curye=0
can be determined by the intersectionfo& 0 and itsHessian curve
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9x2 dxdy  0xdw

| #%r 92 f 2f | _
H() =2 & LLi=o. 3)

92 f 02 f 92 f

dwox  dwdy dw?
For a cubicf =0, H(f) =0is also a cubic. Thus, in general, a culfie= 0 has nine inflection points
(real or imaginary), since, by Bézout's theorem, two cubic curves have nine intersections, unless they
have a common component. Howevgr= 0 has fewer inflection points if it is reducible or singular.
The Hessian curvél (f) = 0 can be used to detect whether a cubic curve is reducible or not.
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Proposition 1. (1) A cubic f = 0 consists of three lines if and only if its Hessian curve H(f) = 0 and
f =0 arethe same curve.

(2) A cubic f =0 consists of a line and a proper conic if and only if f =0 and H(f) = 0 share
exactly one common line.

Proof. Assume that the curvg = 0 consists of three lines. Thegh= 11,15 for three homogeneous linear

factor;(x, y, w), i = 1, 2, 3. Since every point of = 0 is either a singular point or a point on a line,

H (f) vanishes at every point of = 0. ThusH () = cl1l»l3 for some constant. Conversely, if there

exists some constantsuch that () = ¢f, then every point on the curvé = 0 is an inflection point.

But this occurs only wherf = 0 degenerates into three lines. The first part of the proposition is proved.
For the second part of the proposition, assufne IC, wherel is a linear factor and” is a quadratic

factor. Direct calculation show$/ (f) = IC’, where C’ is a quadratic function. Hencg = 0 and

H(f) =0 share a common line. ConverselyHf(f) = 0 and f = 0 have only one common line= 0,

then! is a factor of . By the first part of the propositiory. cannot be factored into three linear factors,

so f = 0 degenerates into a line and a conic curvel

The above proposition gives the following algorithm for detecting whether or not a cubic is reducible.
First compute the Hessian cur#®&( f) = 0 and check if there exists a constarguch thatd () = c¢f . If
yes, f = 0 consists of three lines. Otherwise, complute GCD( f, H(f)). If h contains a linear factor,
then f = 0 reduces to a line and a proper conic. Otherwiges 0 is irreducible. Hence, we assume
hereafter that the cubic we will consider is irreducible.

An irreducible cubic can be singular or nonsingular. A singular cubic has one singular point, which
is a double point of one of the following three types: crunode, cusp, and acnode (Walker, 1950). As we
will see later in the next section, a singular pointfo& 0 is also a singular point of its Hessian curve
H(f)=0. Thus a singular cubic curve has fewer than nine inflection points.

A degree nine equation needs to be solved if one attempts to compute the inflection points of a cubic
f =0 by directly intersecting’ = 0 with its Hessian curvél ( f) = 0. In contrast, Hilbert gives a solution
based on invariant theory to the computation of the inflection points of a cubic that needs to solve a
univariate quartic equation and several univariate cubic equations. To introduce Hilbert’s solution, we first
review some basic concepts from invariant theory. Two references on invariant theory are (Hilbert, 1993;
Olver, 1999).

Let

F(x1,...,x,) = Z ail...imx;_l xim @
i1t Aim=n
be a homogeneous polynomial #im variables.F is also called dorm. Consider an arbitrary linear
transformation

X1 20611)63_ + - +oclmx,’n,

. (5)
X = Qp1Xy + -+ Ay Xy,
Assume the transformation is invertible, that is, the determinant
o117 ... Oy
d=| 1 .| #0. (6)

Up1 ... Oym
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Under the above transformation, the fofinchanges into another form of the same degree
Fi(xf,.ox) = Y a6 ()™ )
i1t tim=n

An invariant of the form F is a polynomiall of the coefficientsy;, ;, which has the property

I( a’ ...):8”1(...,ailmim,...) (8)

> Yiqedm?

for some integerp, which is called thedegree of the invariant/. For example, the quadratic form
F = apx? + 2a1x1x, + a»x3 has an invarianf = apa, — a2, since one can verify that

1 (ap, a, ab) = 821 (ag, a1, az).

A covariant of the form F is a polynomialC of the coefficients:
has the property

and variablesy, ..., x,, which

i1...im

C(...,alfl_._im,...,x’l,...,x,’n) =8PC (oo Qipiys s XLy ey Xp)- 9
A cubic curvef = 0 is determined by a ternary forgh of degree three. The invariants and covariants
of a cubic form are clearly studied in (Hilbert, 1993).

Proposition 2 (Hilbert, 1993).Theternary form f corresponding to a planar cubic curve has two basic
invariants S and J of degree four and six, respectively, and any other invariant of f isa polynomial of S
and J. Theternary form f hastwo covariants of degree three—f and its Hessian H (f), and any other
covariant of degree threeisalinear combination of f and H(f).

We will not write down explicit formulas for the invarianfsandJ, since they are too long to be fitted
in one page. Moreover, these formulas are too involved to be used for compuéindJ. Hence, we
will provide in the next section an efficient way to comp§tandJ of a give cubic curve.

An irreducible ternary form of degree three can be transformed into the normal form by a suitable
linear transformation.

Proposition 3 (Walker, 1950).There exists a real linear transformation such that an irreducible real
ternary form f of degree three can be transformed into the normal form

f(x/, y/’ w/) — y/2w/ _ x/(x/Z + 2ax'w’ + bw/Z) (10)
where a and b arereal constants.

As a consequence of this proposition, an irreducible cubic can be transformed by a projective
transformation into the normal form (10). This normal form of a cubic curve facilitates the proof of
our results in the next section.
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3. Computing singular pointsand real inflection points
3.1. Hilbert’s solution

In this section we discuss how to use the basic invariants of a cfibicO to compute the real
inflections of f = 0. Given a cubicf = 0, consider the family of curves spanned py= 0 andH (f) =0

g:=af +68H(f)=0. (11)

Then for any real constants and 8 that are not both zero, the curge= 0 passes through all the
intersections betweeyi =0 andH(f) =0, i.e., the inflection points and the singular point (if any) of

f =0. If we can finde and 8 such that the Hessian cur#&(g) = 0 is the curveg = 0 itself, then, by
Proposition 1,¢ = 0 is reducible to three lines. Thus the problem of finding the singular and inflection
points of f = 0 can be reduced to the problem of intersecting a cubic curve with three lines. The existence
of sucha andg is proved by Hilbert.

Proposition 4 (Hilbert, 1993).Let f = 0 be a planar cubic curve and H (f) = 0 be its Hessian curve. If
o and g8 satisfy

ot — 245a?p? — 8JaB3 — 48528 =0 (12)

then the curve ¢ = of + 68H(f) = O degenerates to three lines. Here S and J are the two basic
invariants of f.

Hilbert's results provide a complete solution to the problem of finding the inflection points of a cubic
curve in thecomplex projective plane. However, as far as applications in CAGD are concerned there are
still problems worthy of further investigation. In the following we first consider how to efficiently obtain
Eqg. (12), and hence the basic invariadtand J. We then useS and J to classify the singularity type
of f =0, which determines the number of inflection pointsfof 0. We also investigate how real lines
arise as the components of the reducible cuyve of + 68H (f) = 0 given by different roots : 8
of Eq. (12) and we show that only a special real linear component is needed for computing all the real
inflection points off = 0.

Since, as mentioned above, the explicit formulasSf@nd J in terms of the coefficients of = 0 are
too complicated, we may get (12) directly as follows. By Proposition 4, there exists a copssanh
that

H(af +6BH(f)) =y (af +6BH(f)). (13)

We randomly choose two points;, y;, w;), i = 1, 2, and substitute them into the above equation. Then
we can get two equations with 8, y being unknowns. After eliminating, we can arrive at (12). Then
the basic invariant§ andJ can be read off from the coefficients of (12).

The two invariantsS andJ are simple to compute for a curve in the normal form (10).

Theorem 1. The two invariants of a cubic curve in the normal form (10) are given by

S =576(4a®* — 3b), J =110592(8a*— 9b). (14)
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Proof. For the cubic curve in the normal form
f=y*w— x(x2 + 2axw +bw2) =0
its Hessian curve is given by
H(f)= 8[3xy2 + (3b — 4a®)x*w + 2ay*w — 2abxw? — b2w3] =0.
Setting(x, y, w) = (1,0,0) and(x, y, w) = (0, 0, 1) on both sides of (13), respectively, we get
ya = 1526(20736°p% + 368641° B + 4a’p? — 3bp? — 864abap — 55296°bp? + 768:°ap),
6b%y B = —20736°ap? — 199065a5° 83 + 176947230283 + 27648:°b%ap? — b,
Eliminating y from the above equations, we obtain
o + 138243b — 4a®)a?B? + 884736:(9b — 8a?)ap® — 1592524844° — 3b)°p* =0
from which the two invariant§ andJ can be read off. O
3.2. Sngularity detection
To begin with, we study the real roots of the following equation which is obtained by setting: g
in (12):
h(t) :=1* — 245t> —8J1 — 4852 = 0. (15)

h(r) is called thecharacteristic polynomial of the cubic curvef = 0.
Theorem 2. The distribution of the roots of /(¢) is as follows:

(1) If S=J =0, then h(+) =0 hasareal root + = 0 of multiplicity four.

(2) If S=0and J #0, then h(r) = 0 hastwo real rootsr =0 and r = 2/ J.

(3) If S0 and J? — 64S5% = 0, then A(t) = 0 has two real roots with opposite signs; one root is
—2 sgn(J)~/S of with multiplicity three, and the other root is 6 sgn(J)~/S of multiplicity one.

(4) 1f S#£0and J2 — 6453 + 0, then h(t) = 0 has two simple real roots of opposite signs; furthermore,
these two real roots are given by

1. = £/ (124 8V3)|S|

when J =0or

i - L
2 =sgr(J) 2(y+3S>i\/2( V+3S+¢m>

when J # 0, where

1
y = 5\3/12 — 6483 — §.

Herer, ispositive and r_ is negative.
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Proof. If S =0, thenk(r) =t*—8Jt has two real roots= 0 andr = 27 J. If § £ 0 andJ?—645% =0,
let L = sign(J)+/S. ThenS = L2 and J = 8L3. It follows thath(r) = (x — 6L)(x + 2L)% = 0 has two
real roots, one with multiplicity one and the other with multiplicity three. In the following we assume
S 0 andJ? — 6453 #£0.
We construct the Sturm sequence of polynorhial as follows

ho := h(r) = t* — 24St?> — 8Jr — 4852,
hy =K (@t)/4=13—125t —2J,
hy := 28t> + Jt + 852,
hy = —(J% - 645%)1,
h4 = —SZ.
The sign changes of the Sturm sequence=at-oo, t = 0 andr = oo are, respectively
V(-00)=V(+,—,5,J2—-648% —), V()= (-, —J, +, -),
V(+00) =V (+,+, S, —(J? — 645°%), —).

It is easy to verify that/ (—oco0) = 3, V(0) = 2 andV (+o0) = 1. Hence there exist one root jr-oo, 0)
and one root in0, co). Sincehy, # 0, these two roots are simple. Next we derive the expression for the
two real roots ofi(¢).

WhenJ =0, h(r) = 0 becomes

t* — 2451% — 485% = 0.

Thus the real roots di(r) =0 are

t =44/ (124 8V3)|S].

Now we supposéd = 0. Introduce a real number so that the characteristic equation is transformed
to

(2 + 43/)2 =8(y +38)1? +8Jt + 16(y? + 35?). (16)

For the right-hand side of the above equation to be a perfect square, we need the discriminant to be zero,
i.e.,

J?—8(y +35)(y*+35%) =0. (17)
Thus the unique real numberis found to be

1
y = 5\3/12 — 6453 — S.

SinceJ # 0, it follows from (17) thaty + 3S £ 0. So

2
2(y + BS)) ’
Taking the square root and rearranging, we have

2J
?+2/2(y +3S)t+4y + ———— =0. 18
(v Y G T35 (18)

(t? + 4;/)2 =8(y +39) (r +
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It follows that the two real roots gf(r) =0 are

2 = SgN(J)y/2(y + 35) + \/ 2(—y 435+ L)

V2(y +39)

Note thatr, > 0 andz_ < 0, according to the preceding argument. The theorem is thus proved.

Remark 1. In deriving the above expression for the real root& @f in case (4), we used the standard
technique in solving a quartic equation in the first step of fingirtg make the two sides of (16) perfect
squares (Uspensky, 1948). However, the key to being able to obtain a simple expression for the real roots
is that the resolvent cubic equationyrtakes a special form so that we can get a simple expressign for

e,y = %«3/J2 — 6453 — S. Note that the expressions for the roots of a general resolvent cubic equation
for solving a quartic equation are more complicated (see again (Uspensky, 1948)).

Remark 2. It will be seen shortly that, in general, only the negative real rodt(of = 0 is needed for
computing the real inflection points of a cubic curve. Since we have obtained an explicit expression for
this root in Theorem 4, we can compute the real inflection points of a cubic curve without the need of
solving the quartic equatiol(r) = 0 numerically.

Now we consider how the invariantsand J can be used to classify the singularity of a culfie- 0.
If S=0, by Proposition 1H(f) = 0 consists of three lines, since in this case0 is a root ofa(z) = 0.
The vanishing of/? — 6452 = 0 signals thatf = 0 is singular. In fact, we have

Theorem 3. An irreducible cubic f = 0 issingular if and only if /2 — 64S% = 0. If f =0 issingular,
its singular point is always real and the singular point is a crunode, a cusp, or an achode if and only if
J>0,J=0,0r J <0, respectively.

Proof. By Proposition 3, any irreducible cubic can be transformed into the normal form (10) by a
suitable real projective transformation, and the type of its singular points and the number of its inflection
points are not changed by the transformation. Accordingly, the two invarfaaitsl / are transformed to
S’ =8*S andJ’ = 8%J, and henceJ’)? — 64(S")3 = 6%(J? — 6453), wheres # 0 is the determinant of
the transformation matrix. Thus we just need to prove the statement for a cubic in the normal form (10).
Note that here we just make use of the existence of the normal form of a cubic but do not need to actually
compute it.

The canonical curve (10) has a singular point if and onlyf 0 ora?> — b = 0, and the singular point
isreal (0,0, 1) or (—a, 0, 1)). Thus the singular point of a real singular cubic is real.

On the other hand, by Theorem 1, we have

J? — 645% = [110592: (842 — 9)]” — 64[576(4a® — 3b) |’ = —223%%(a® — b).

Thus the canonical curve (10) has a singular point if and onkf if- 64S° = 0.

Now assume?— 6452 = 0, thatisp = 0 ora®—b = 0. Obviously,S = J = 0ifand only ifa = b = 0,
and if and only if the singular point is a cusp. Next we assume0 buta # 0, so S = 23042 and
J =88473a3. In this case, the canonical curve (10) becom®&s: x2(x + 2a). It has a crunode if and
only if @ > 0, or if and only ifJ > 0. It has an acnode if and onlydf< 0, and if and only if/ < 0. For
the casei®> — b = 0 buta # 0, one can show similarly that the same results hold.



110 F. Chen, W. Wang / Computer Aided Geometric Design 20 (2003) 101-117

Theorem 4. If an irreducible cubic f = 0 is singular, then H(f) = 0 is also singular; furthermore, in
this case the singular point of f = Qisasingular point of H(f)=0.

Proof. Again we just need to prove that the statement holds for an irreducible cubic fusv@ in the
normal form (10). It can be computed that the two invariants of the Hessian gUrgg= 0 are given by
S' = 2'8(576a° — 1296:*h + 72%°),
J' =2%3%(5124° — 1728:°b + 3888:*b* — 486Q:°b° + 21817).
Thus
J'? — 6483 = 25031242 — p)b?(4a? — 3b)° = 23933 (4a? — 3b)°(J2 — 645°). (19)

Since f = 0 is singular, by Theorem 3,2 — 645° = 0. It follows from (19) that/'? — 645’3 = 0. Then,
by Theorem 3H (f) =0 is singular.
For the cubic curvef = 0 in the normal form

f=y*w —x(x*+ 2axw + bw?) =0
its Hessian curve is
H(f)=8(3xy* + (3b — 4a®)x*w + 2ay°w — 2abxw® — b?w®) = 0.

If f=0is singular, then by Theorems 1 and 3, eithet 0 or a®> — b = 0, with the singular point of
f=0at(0,0,1) or(—a,0, 1), respectively. Itis then straightforward to verify th@t 0, 1) or (—a, 0, 1)
is also a singular point off (f) =0 if b =0 ora® — b = 0, respectively. O

3.3. Computing a real line that contains all real inflection points

From now on we seB =1 in a roott = « : B of Eq. (15). For each solution= « of Eq. (15), the
corresponding curve = «f + 6H (f) = 0 can be factored into three lines. We need to know how many
of the three lines are real.

Theorem 5. Suppose that f = O isareal irreducible cubic. Let « be a real root of () = 0. Then the
curve g = of + 6H (f) = 0 consists of three distinct real linesif and only if « > 0or « =0and J <0,
and contains one real line if and only if « <0 or « =0 and J > 0. In particular, when S = J =0,
g = H(f) consists of threereal lines, and one of themis a double line.

Proof. Since f =0 is an irreducible cubic, by Proposition £,=0 can be mapped to a cubfc=0in
the normal form (10) by a linear transformatidfi. The characteristic equation gf= 0 can be shown
to be

h(t) =t* — 2458%° — 8J 5% — 485258 =0

whose roots differ from those df(¢) of the cubic f = 0 only by a positive multiplicative constast,
wheres is the determinant of the matrix @f. On the other hand, it is easy to see that the number of
components of the curye= 0 obtained fromy = 0 with a root ofi(¢) has the same number of real linear
components as the cunge= 0 obtained fromf = 0 with the corresponding root @f(¢); furthermore, a
double line ofg = 0 is transformed by to a double line of = 0.
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Hence, to prove the theorem, we may assume that the ¢gubi® is in the normal form (10), i.e.,
flx,y,w)=y?w— x(x2 + 2axw + bwz).
Direct computation yields

g =af +6H(f)
= —ax® + (144 — 20a — 1920%)x*w + 144xy? + (—96av — ab)xw?
+ (o + 96a)y2w — 48%ws.

When a # 0, the curveg = 0 intersects the line at infinityp = 0 in three distinct pointg0, 1, 0),
(Vax,12 0) and (—/ax, 12 0). If « > 0, the three intersection points are real,gse: O consists of
three distinct real lines; i < 0, two of the intersection points are complex conjugateg s00 contains
only one real line.

Wheno = 0 is a root ofi(t) = 0, S must be zero, sb = 44?/3 andJ = —442368:°. Then the curve

g = (3x + 2aw)(9y* — 84°w?) =0

degenerates to three real lines if and only i O, and if and only if/ < 0. Similarly, g = 0 contains one
real line if and only ifJ > 0.

WhenS = J =0, =0 is the only root ofi(r) = 0, andg = 6H (f) = 24xy?. Thusg = 0 consists of
three real lines, one of which is a double linex

Theorem 6. The number of inflection points of an irreducible cubic curve f =0 is asfollows:

(1) If f =0hasacusp, then f =0 hasonereal inflection point;

(2) If f =0 has a crunode, then f = 0 has one real inflection point and a pair of complex conjugate
inflection points;

(3) If f =0hasan acnode, then f = 0 has three real inflection points,

(4) If f =0 isnonsingular, then f = 0 has three real inflection points and three pairs of complex
conjugate inflection points.

Proof. Without loss of generality, we assume thét= 0 is in the normal form (10). Iff =0 has a
cusp, by Theorem 3§ = J = 0. Hencef = y?w — x2 and H(f) = 24xy?. The curvesf = 0 and
H (f) = 0 have two distinct intersection points: the singular poh0, 1) of f = 0 of multiplicity 8 and
the inflection point(0, 1, 0) of f =0.

When J? — 645% =0 but S # 0, f = 0 has a crunode or an acnode. In this cage? — b) =0, so
b =0 ora® — b = 0. We consider only the cage= 0 since the argument is similar whed — » = 0.
Then (0, 0, 1) is the singular point off = y? — x?(x + 2aw) = 0. The two real roots of(z) = 0 are
a1 = —96a anda, = 288&:, which yield

g1 =o1f +6H(f) = 48x(2ax* + 3y?),
g2=arf +6H(f) = —483x + 8aw)(—y? + 2ax?).

It is easy to see that; = 0 andg, = 0 intersect in four point$—8a/3, £8/9+/—6aa, 1), (0,0, 1), and
(0,1,0). The point(0, 0, 1) is the singular point off = 0 at whichg; = 0 andg, = 0 intersect with
multiplicity 6. The other three points are the inflection pointsal¥ 0 (i.e.,J > 0, or f =0 has a
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crunode), one inflection point is real and the other two are complex conjugate; @ (i.e.,J <0, or
f =0 has an acnode), the three inflection points are real.

When J? — 6452 £ 0, f = 0 is nonsingular. We consider two casés= 0 andS # 0. If S =0, then
f=y?—x(x%+ 2ax +4/3a%) andH (f) = (8/9)(9y? — 843w?)(3x + 2aw). The two roots of(t) =0
areqa; = 0 anday, = —96Y4. Thus

g1 = 6H(f) = (16/3)(9y? — 8a*w?)(3x + 2aw),

g2 = axf +6H(f)
= (4/9)c[3x + 21— c)aw] [72ax2 +48(2 + ¢)a’xw + 8(c + 2)%aw? + 2702y2]

wherec = /4. It can be computed directly that the nine intersection points, ef 0 andg, =0, i.e.,
the inflection points off = 0, are(0, 1, 0), (—2/3a, £2/9a~/—6a, 1), (2/3(c — 1)a, £2/3a+/2a, 1) and
((—(2+ ¢)a £ c+/=3a)/3, £2/3a~/2a, 1). If eithera > 0 ora < 0, there are three real points and three
pairs of complex conjugate points among the nine intersection points.

If §+£0, by Theorem 24(¢) = 0 has two real roots and a pair of conjugate roots 1 (u # 0),
where A is real andu # 0 is a pure imaginary number. The intersection of the two complex curves
g+ =M £ f+6H(S) also gives the nine inflection points ¢f= 0. Let

8+ = llols, g =hill3

wherel;, i =1, 2, 3, are linear functions. Each lirlgis not a real line, for otherwisg, andg_ would
have a common linear component, contradicting that 0 is irreducible (ref. Proposition 1). Each lihe
and its conjugaté intersect at a real point. We now claim th]ﬁandZ i (i # j) intersect at an imaginary
point. If, on the contrary, the intersection lofand[ j is a real pointPy, then/; and! ; also intersect aPy.
Then Py is a singular point og. since two of its components and!/; pass throughPy. Similarly, Py is
also a singular point of_. Thus Py is a singular point of the curvg = (g, — g1)/(2u) = 0. But this
contradicts thatf = 0 is nonsingular. Hence, wheh=£ 0, f = 0 has three real inflection points which
are the intersections éfand/;, i = 1, 2, 3, and three pairs of complex conjugate inflection points which
are the remaining intersections betweeés 0 andH (f) =0. O

Remark. The results of Theorem 6 regarding the number of inflection points for different types of
singular planar cubics is well known in algebraic geometry (see, e.g., (Gibson, 1998)). The emphasis
of our proof is, however, to relate the different cases of singularity to the two invaieemtsl J, which
provides a basis for the algorithm to be described below.

Before giving the algorithm, we need the following two corollaries for preparation.

Corallary 7. Given an irreducible planar cubic f = 0, there exists a unique real root « of 4 () = 0 such
that g = of + H(f) = 0 has exactly one simple real linear component. Specifically, if S=J =0, i.e,
f =0 hasa cusp, the only root « = 0 of h(r) = 0 gives g := H(f) = 0 which has a simple real linear
component and a real double linear component; if S # 0 or J # 0, there exists a root « of h(r) =0
such that g = af + H(f) = 0 has one simple real linear component and a pair of complex conjugate
components.

Proof. The corollary follows from Theorems 2 and 5 by the following choices of the adatdifferent
cases: Wher$ = J =0 (case (1) of Theorem 2), chooge= 0. WhenS =0 andJ > 0 in case (2) of
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Theorem 2, choose = 0. In cases (3) and (4) or whesh= 0 andJ < 0in case (2) of Theorem 2, choose
« to be the only negative root @f(r) = 0 as given in Theorem 2.0

Let! denote the unigque real simple linear component of the cgirvaxf + H(f) = 0 as prescribed
in Corollary 7.

Corallary 8. If f =0 hasthree real inflection points, i.e.,, f = 0isnonsingular or has an acnode, then
thereal line! contains all the threereal inflection points. When f = 0 hasa crunode or a cusp, [ contains
the only real inflection of f = 0 and the crunode or cusp.

Proof. First suppose thatf = 0 has three real inflection points. Then, by Theoreny 6 0 does not
have a cusp; hence, by Theoren$3¢ 0 or J # 0. Then, by Corollary 7, there exists a unique real oot
of h(r) = 0 such thag = f + H(f) = Il1/1, wherel is a simple real linear factor arig, /; are a pair of
complex conjugate lines. Note that, as an imaginary liper /; cannot contain two distinct real points.
Clearly, I contains at least one real inflection pointof f = 0. Suppose the other two real inflection
pointsr, andr; are not or/, but on/; andly, respectively. Let; denote the real intersection point lf
and/;. Then eithely # r, or g # r3. But this contradicts that both and/; are imaginary lines. Hence,
all the three inflection points of = 0 are on the real lingé

When f = 0 has a crunode or a cusp, the proof is given by the proof for cases (1) and (2) in
Theorem 6. O

3.4. Algorithm for computing real inflection points

Based on the preceding analysis, we present the algorithm for computing the real inflection points and
the singular point (if any) of an irreducible cubic algebraic cufve 0.

Algorithm: Real-Inflections

Input: An irreducible real cubic algebraic curye= 0.

Output: The real inflection points and singular point (if any) ot 0.
BEGIN

Step 1 Compute the Hessian cuili€ /) = 0 of the curvef = 0.

Step 2 Obtain the characteristic polynomiat) as defined in (15), using the procedure described after
Proposition 4 in Section 2. Extract the invariastandJ from the coefficients of Eq. (15).

Step 3 Compute the real roots/oft) = 0. If #(z) = 0 has only one roat; = 0, then find the simple real
linear component of H(f) = 0. Otherwise, letr; < a, be the two real roots df(z) = 0. Then,
by Corollary 7,21 = a1 f + 6H(f) = 0 contains only one simple real line.
Factor out this liné as follows. Choose two valuas andx; of x, and substitute them intg =0
to solve for the simple real values, w; and y,, w, such thatg:(x;, y;, w;) =0,i = 1, 2. This
requires to find the real roots of two cubic equations which are known to contain only one simple
real root. Then the liné= 0 passing througlixi, y1, w1) and(x,, y», wy) is the simple real line
of g1= 0.

Step 4 Parameterize the linel = I(«). Substitutel(«) into f = 0, or equivalently, intag, = 0 given
by the other real root of(z) = O if 4(¢) has two real roots, to get a cubic polynomialinBy
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Corollary 8,g-(I1(1)) = 0 has three real roots; a simple root corresponds to a real inflection point,
and a double root (if any) corresponds to a singular point ef 0.

The case of/? — 645% =0 andJ <0, i.e., f =0 has an acnode, should be treated separately if
one also wants to find the acnode. In this case, the above intersecfien®fvith f = 0 yields

the three real inflection points gf = 0. To find the acnode, we first obtain the quadratic factor

p = g1/1, which consists of a pair of conjugate lines, and the intersection of these two lines gives

the acnode off = 0. This intersection point can be computed by solving the linear system of
equationsp; = p|, = p,, =0.

END

The above algorithm can also be adapted to detect if there exists a singular point and/or inflection

points in a regionR in the plane. Suppose first that the regi®ns convex for the sake of simplicity in
discussion. In Step 4, instead of solving the equagigi(z)) = 0, we can check if the cubic polynomial
g2(l(w)) = 0 has any real roots in some interva& [a, b] determined by the part of the lidéntercepted
within the regionR. If g2(/(u)) = 0 has a simple root in € [a, b], then f = 0 has an inflection point in
R, and ifg,(I(u)) = 0 has a double root im € [a, b], then f = 0 has a singular point, i.e., a crunode or a
cusp, inR; a separate checking is needed for an acnode. When the rRggononconvex, one may need
to check against several intervalsigfsince the intersection of the lii@:) and R may consist of several
line segments of(u).

3.5. Examples
We use three examples to explain how the algorithm works.

Example 1. Given a cubic
fi=—8x3— 122y — 6xy? — y° — Tx%w — 2xyw + 7y?w — 2xw? — yw?
we are going to find the singular point and real inflection pointg ef 0. It is easy to compute that

S = 360000,/ = —1728000000 and'? — 645 = 0. Thus, by Theorem 3f = 0 has an acnode and
three real inflection points. The two real roots of the characteristic polynomial

h(t) = t* — 8640000 + 13824000000— 6220800000000

area; = —3600 andx, = 1200, and the corresponding curves are
g1 = —1200(—30x® — 75¢%y — 90xy?® — 30y° — 19 %w — Ldryw + 4y*w — 2xw? — yw? + w?),
g = —120((2x3 — 27x%y — 66xy? — 26y° + 9x%w — 6xyw — 24y%w + 6xw? + 3yw? + w3).

By substitutingx = 0 andw = 1 into g; = 0, we get two points on the curyg = 0: P, = (0,1/3,1)
and P, = (1, —5/3,1). The linel = 6x + 3y — w = 0 passing througtP, and P, is the only real linear
component og; = 0. To find the inflection points, we intersdatith g, = 0, and find three real inflection
points: (1, —2, 0), (9+ 4+/3, —3— 8v/3, 45) and(9 — 4v/3, —3+ 8/3, 45).

To further find the acnode of =0, let p = g1/1 = —5x%2 — 10xy — 10y? — 4xw — 2yw — w?. The
singular point is the solution of the linear system of equations

py=—10 — 10y — 4w = p} ;= —10x — 20y — 2w =p,, = —4x — 2y — 2w =0
which is (-3, 1, 5).
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_d !

Fig. 1. Example 1. Two finite inflection points, marked by bullets, are on the dashed line which passes through the third inflection
point at infinity. The acnode is marked by a diamond.

Example 2. Let a cubic curve be given by
fi=—x346x%y — 12xy? 4 8y° — 8x%w + 38 yw — 35y%w — 25cw? + 56yw? — 26w°.

By direct computation, we obtai§ = J = 0. Thus, by Theorem 3f = 0 has a cusp and one real
inflection point. In this casé(t) = 0 has only one roott = 0, leading tog = af + H(f) = H(f),
which is

H(f)= 216()63 — 3xy? — 2y° + 5x%w + dxyw — y?w + Txw? + dyw? + 3w3).
We now choose = 0, w = 1 and substitute them intd (/) = O to get two simple real points ol ( f):
P;=1(0,3,2) and P, = (1, 2,1). The linel = x — 2y + 3w = 0 passing througlP, and P; is the simple
real line of H (f). We substituter = 2y — 3w into f = 0 and find a simple root : w = 1: 0 and a double
rooty: w = 2: 3. Thus we get the real inflection poi(&, 1, 0) and the cusg—5, 2, 3).

Example 3. A cubic curve is given by
fi=xy?— (x —w)(2x — w)w.

We are going to detect if there exist any inflection pointsfof 0 in the rectangular regio® =
[0, 1] x [0, 1]. By direct computation, we obtaif? — 6453 = —330225942528& 0. Thus, by Theorems 3
and 6, f = 0 is nonsingular and has three real inflection points. The two real roots of the characteristic

polynomiali(z) area; = —48y/9 + 6+/3 anda, = 48y 9+ 64/3, and the corresponding two curves are

g1 = —48(4)63 + (p+3)xy?> = 2(p + 3x°w — 3y?w + 3(p + Dxw? — pws),
g2 = —48(4x3 — (p —3)xy? +2(p — 3)x?w — 3y?w — 3(p — Dxw? — pw3),

wherep = v/9+ 64/3.
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Fig. 2. Example 2. The dashed line passes through the cusp, marked by a diamond, and the inflection point at infinity.
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Fig. 3. Example 3. Two finite inflection points (marked by bullets), one of which is inside the rg@ibhx [0, 1], are on the
dashed line which passes through the third inflection point at infinity.

The only real line component of; is [ = 6x — (p — 3)v/3w. [ = 0 intersects the rectangular
region R at two pointsP; = ((p — 3)4/3/6,0,1) and P, = ((p — 3)4/3/6, 1, 1). Parameterizing by
I =(1—-u)P,+uP>=0, and substituting it intg, = 0 yields
g2(lw)) =1/3((p — 3v/3—-6)(3u® — (p — V3~ p+6).

It is easy to check that;(I(x)) = 0 has one simple root ii), 1]. Thus f = 0 has one real inflection point
in the regionR.
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